コルチ コステロ ン。 【受託検査】コルチコステロン(corticosterone)分析 ヒト/マウス/ラット/実験動物・測定対象:血清[日本老化制御研究所]

コルチコステロンとコルチ

コルチ コステロ ン

プロスタグランジンは五員環構造を含む20個の炭素鎖からなる生理活性である。 プロスタグランジンと構造の類似したを併せてプロスタノイド(prostanoid)と称する。 1930年にのに含まれる収縮物質として発見された。 (NSAID)の抗作用、作用、作用は、主にプロスタノイドの合成阻害によると考えられている。 これらの機能には、・・の維持、や子宮といったの機能、局所炎症に伴う亢進や惹起、応答、、疾病時の発熱や応答、やに伴う、脳機能的充血、や、下での制御などが含まれる。 生合成 炭素鎖内の二重結合を二つ有する、、、、は、遊離から生成される。 まず、酸素添加酵素である(; )により、アラキドン酸から()、さらに()が産生される。 次いで特異的な合成酵素の働きにより、が各種PGに変換される。 一般にPG生成は(PLA 2)により細胞膜中のリン脂質からアラキドン酸が切り出されて開始すると考えられている。 例えば、からのPG産生は (cPLA 2)の遺伝子欠損によりほぼ完全に消失する。 cPLA 2の活性は細胞内上昇によるcPLA 2の膜移行、などによる、遺伝子発現制御といった複数のメカニズムにより制御されている。 しかし近年、脳、肝臓、肺の遊離アラキドン酸とその下流で生成されるPGの多くが、(monoacylglycerol lipase; MAGL)依存的な(2-arachidonyl-glycerol; 2-AG)のにより生ずることが報告されている。 COXにはとと呼ばれる二つのアイソフォームが存在する。 一般に、COX-1は刺激による誘導性が乏しいことから構成型と呼ばれ、COX-2は刺激によりが誘導されることから誘導型と呼ばれるが、やではCOX-1、COX-2のいずれも恒常的に発現している。 生理的条件ではCOX-1はや血管周囲マクロファージに 、COX-2はやなどのに発現している。 さらに炎症や神経変性疾患では、やにもCOX-2の発現が誘導される。 COXは(NSAID)の主たる標的分子であり、NSAIDの抗炎症作用、鎮痛作用、解熱作用はPGの合成阻害活性によると考えられている。 PGH 2から各種PG合成を触媒する酵素群も多数同定されている。 PGH 2からPGD 2の合成には(PGDS)が関与し、(hematopoietic PGDS; H-PGDS)と(lipocalin-type PGDS; L-PGDS)の二種類が存在する。 PGH 2からPGE 2の合成に関わる(PGES)には、(cPGES)、(mPGES-1)、(mPGES-2)の三つのアイソフォームが報告され、それぞれ異なる機能を有することが示されている。 COXとPGESの共役にはアイソフォーム特異性があることが知られ、cPGESはCOX-1と、mPGES-1はCOX-2と、mPGES-2はCOX-1とCOX-2の両方と共役しPGE 2合成に関わるとされる。 PGH 2からPGI 2やTXA 2の合成にはファミリーに属する(PGIS)や(TXAS)が関与する。 DPにはとが、EPには、、、が存在し、それぞれ異なる遺伝子によりコードされている。 これらPG受容体は組織、細胞レベルの発現分布やが異なることで、特異的な機能を発揮すると考えられている。 DP2以外の八種の受容体はプロスタノイド受容体ファミリーを形成し、細胞内情報伝達とその作用からrelaxant receptor、contractile receptor、inhibitory receptorの三種に分類されている。 Relaxant receptorは主にを介して上昇を惹起しの弛緩を誘導する受容体で、DP1、EP2、EP4、IPを含む。 Inhibitory receptorは主にを介する抑制により平滑筋の弛緩を抑制する受容体で、EP3を含む。 これらのアイソフォームは異なる細胞内情報伝達に共役することが知られている。 DP2は他の八種の受容体とは別のファミリーに属し、CRTH2やGPR44とも称される。 Giと共役して、、の遊走を誘導することが知られている。 このように、プロスタグランジンの生合成や作用に関わる分子種は多岐にわたるが、PGを標的とした従来の化合物は特異性が低く、各種PGの作用機序は長らく不明であった。 PG生合成酵素群やPG受容体の同定とクローニングが進み、や特異的阻害薬が開発されたことで、各種PGとその受容体の特異的な役割が解明されてきた。 本稿では、脳機能と関連の深い機能に限って紹介する。 これらの症状は(sickness behavior; sickness response)と呼ばれ、生存を促進する適応的反応と考えられている。 PG合成を阻害するNSAIDはこれらの多くの症状を改善することから、疾病応答におけるPGの役割が推測されてきた。 発熱 へのNSAIDやPGE2の局所注入実験により、視索前野におけるPGE2産生が疾病応答モデルによるに寄与することが示唆されてきた。 その後、の解析により、PGE2生合成に関わるCOX-2とmPGES-1が疾病応答モデルにおける発熱に必須であることが示された。 LPSの全身投与により、COX-2とmPGES-1が脳内の細胞に共に誘導されることから、疾病時の発熱には血管内皮細胞からのPGE2産生が関与することが示唆された。 しかし、血管内皮細胞でのCOX-2とmPGES-1の遺伝子発現誘導はLPS投与から一時間程度の発熱の初期相には見られない。 一方、やにおけるマクロファージではCOX-2の発現は末梢へのLPS投与により速やかに誘導され、末梢血中のPGE2濃度も速やかに上昇する。 さらに末梢血中へのPGE2阻害投与により発熱が遅延することから、発熱の初期相には脳外で産生されたPGE2の関与が示唆された。 しかしEP1欠損マウスでもLPSの投与量によって発熱応答に異常を認めることから、部分的にEP1の関与もある。 さらににより、疾病応答における発熱には視索前野神経細胞におけるEP3が必須であることが示された。 EP3は視索前野のに発現しているが、この神経細胞は(raphe pallidus; RPa)にあるのを直接的あるいは間接的に抑制する。 EP3の活性化は視索前野の抑制性神経細胞を抑制することで、RPaの交感神経系を脱抑制すると考えられている。 発熱は皮膚血管収縮による放熱減少、からの熱産生促進、ふるえと呼ばれる不随意の筋収縮により誘導される。 脳領域不活性化実験から、視索前野におけるEP3活性化は、RPaへの直接投射により皮膚血管の収縮を促し、(dorsomedial hypothalamus; DMH)を経てRPaへ至る間接投射を介して褐色脂肪組織の熱産生を惹起すると考えられている。 HPA系活性化 視床下部の(paraventricular hypothalamic nucleus; PVN)の小細胞領域には(corticotropin-releasing hormone; CRH)陽性の神経細胞が存在する。 このCRH陽性神経細胞は(median eminence; ME)にを投射しており、神経細胞の活性化に応じてCRHをに放出する。 CRHはからの(adrenocorticotropic hormone; ACTH)放出を誘導し、ACTHはから放出を促す。 この一連の過程を活性化と称する。 視索前野へのNSAIDとPGE 2の局所投与実験から、LPSによるHPA系活性化に視索前野におけるPGE 2作用が関与することが示唆されてきた。 LPS投与によるHPA系活性化にはタイミングによって異なるPGE 2生成機構が関与する。 すなわちCOX-2やmPGES-1の欠損マウスではLPS投与から6時間後の放出は減弱するが、LPS投与から1時間後では減弱を認めない。 LPS投与により脳内の血管内皮細胞におけるCOX-2とmPGES-1の発現が共に誘導されることから、LPSによるHPA系活性化の後期相に血管内皮からのPGE2産生が関与する可能性が示唆される。 一方、COX-1欠損マウスではLPS投与から1時間後のコルチコステロン上昇が消失するのに対し、6時間後のコルチコステロン上昇は正常であることから、HPA系活性化の初期相にはCOX-1を介したPG産生が関わる。 COX-1特異的阻害薬の脳室内投与によりLPS投与によるHPA系活性化の初期相が阻害されることから、COX-1の作用点は脳内であると考えられる。 生理的条件下ではCOX-1はミクログリアや血管周囲マクロファージに発現しているが、LPS投与により速やかに血管内皮に誘導されることが報告されている。 LPSによるACTH分泌にはPG依存的なメカニズムとPG非依存的なメカニズムが共に関わるが、PGE受容体欠損マウスを用いた解析から、LPSによるPG依存的な分泌にはEP1とEP3が共に必要であることが示されている。 HPA系活性化におけるEP1とEP3の作用部位は確定していない。 EP4アゴニストの内投与により摂食行動が抑制されること、PGE2の内投与による摂食行動の抑制がEP4阻害薬により消失することから、食欲不振におけるEP4の役割が示唆されている。 一方、DP1活性化は依存的に摂食行動を促進することが示されている。 覚醒睡眠 PGD 2が睡眠促進物質であることはPGD 2の投与により示された。 PGD合成酵素にはとがあるが、L-PGDSのであるSeCl 4とL-PGDS欠損マウスを用いて、L-PGDSが生理的な睡眠に関与することが示された。 さらにL-PGDS欠損マウスを用いた解析から、断眠によりL-PGDS依存的に脳内のPGD2が蓄積し、このPGD2生成が断眠後のノンレム睡眠のリバウンドに必須であることが示されている。 PGD 2による睡眠促進作用はDP1を介することがDP1欠損マウスを用いて示されている。 L-PGDSは、、に発現するのに対し、DP1は睡眠誘導に関わる腹外側視索前野の近傍の軟髄膜に限局して発現する。 PGD 2による睡眠促進作用はの阻害薬の腹腔内投与により阻害される。 以上の結果から、L-PGDSにより産生されたPGD 2が軟膜に発現するDP1に結合し、のアデノシン濃度を上昇させ、アデノシンA2A受容体を介して睡眠を誘導すると考えられている。 一方、PGE 2はであり、(tuberomammillary nucleus; TMN)の神経細胞に発現したEP4に作用し、ヒスタミンの生合成とでの放出を促進することが示唆されている。 疼痛 には末梢性と中枢性のPGE 2作用が関与する。 例えば、LPS投与による末梢炎症は急性のを示すを増強するが、この疼痛反応はEP3欠損マウスとIP欠損マウスで減弱する。 また、足底部に投与したPGE 2とPGI 2はそれぞれEP1とIPを介してを誘導する。 この作用に合致し、EP1とIPはのに発現しており、熱と酸による疼痛に関わるの応答性を増強することが示されている。 一方、局所炎症による疼痛過敏は腰椎へのCOX-2阻害薬投与により抑制され 、腰椎くも膜下腔へのPGE 2投与により熱へのや(触覚刺激による激痛)が誘導されることから 、炎症性疼痛には中枢神経系のPGE 2作用も関与すると考えられている。 EP2欠損マウスでは局所炎症や腰椎くも膜下腔へのPGE 2投与による痛覚過敏が消失することが示されている。 一方、皮下組織へのPGE 2投与による痛覚過敏には異常を認めないことから、疼痛におけるEP2の作用は中枢性であると考えられた。 EP2に加え、腰椎くも膜下腔へのPGE 2投与によるアロディニアはEP1欠損マウスで消失することも報告されている。 末梢神経損傷に起因する神経因性疼痛におけるPGの役割には不明な点が多いが、mPGES-1の遺伝子欠損 や腰椎くも膜下腔へのEP1特異的阻害薬投与 によりマウスにおける神経因性疼痛が生じないことが報告されている。 ドーパミン系と情動 脳内のPGE 2は、疾病応答のみならず、心理下での情動制御にも関与することが示されている。 EP1欠損マウスは、の破綻との亢進、断崖からの異常な飛び降り行動、の亢進を呈する。 一方、における運動量、における、における短期、ホームケージにおける行動には明らかな異常を認めない。 これらの行動異常から、心理ストレス下での衝動性制御におけるEP1の役割が提唱されている。 この行動異常の一部はEP1阻害薬投与により再現される。 さらにEP1アゴニストの脳室内投与により攻撃性が抑制されることから、EP1の作用点は脳内にあることが示唆された。 の制御にはなどの重要性が知られている。 ドーパミン放出の生化学的指標であるドーパミン代謝回転計測やによる細胞外ドーパミン濃度計測から、EP1欠損マウスのやではドーパミン放出が亢進していることが示唆された。 さらにEP1欠損マウスの攻撃性や音驚愕反応の亢進が阻害薬により消失することから 、EP1欠損マウスの行動異常の少なくとも一部はドーパミン系亢進によると考えられている。 このEP1作用に合致し、EP1アゴニストによりのドーパミン神経細胞への入力が増強されることが示されている。 EP1によるドーパミン系抑制はによる情動変容誘導にも重要である。 反復社会挫折ストレスは社会的忌避行動や不安様行動を誘導するが、EP1欠損マウスではこれらの情動変容が観察されない。 はに投射する(; )ドーパミン神経細胞を活性化し、社会的忌避行動の発現を抑制する。 社会挫折ストレスの反復により前頭前皮質ドーパミン系の応答は抑制されるが、EP1欠損マウスではこの前頭前皮質ドーパミン系の抑制が消失する。 さらにEP1欠損マウスへのドーパミン阻害薬の投与により社会的忌避行動が回復することから、PGE 2-EP1系による前頭前皮質ドーパミン系の抑制が反復ストレスによる情動変容に関わることが示唆される。 反復ストレスによる社会的忌避行動誘導にはCOX-1が特異的に関与する。 脳内ではCOX-1はに発現しており、反復ストレスによりミクログリア活性化が誘導されることが組織学的に示唆されている。 これらの結果は、反復ストレスによる情動変容にミクログリア由来のPGE 2産生が関与する可能性を提示するが、今後の検証が必要である。 一方、EP1欠損マウスでは、細胞外ドーパミン濃度を上昇させるやドーパミン様受容体アゴニストの全身投与による運動量増加の度合いが減弱している。 EP1は線条体ではとを形成するに発現している。 線条体におけるEP1活性化は、ドーパミン活性化による Thr34リン酸化亢進と活性化によるDARPP-32 Thr34リン酸化抑制のいずれも促進することが示されている。 シナプス可塑性と記憶学習 海馬へのPG合成阻害薬の投与により、における海馬依存的な長期的の障害が認められる。 さらにEP2欠損マウスでも海馬依存的な や水迷路試験による長期的空間学習 が障害されるとの報告がある。 この行動異常に合致し、EP2欠損マウスでは海馬の複数のシナプスでの異常が報告されている。 さらに背側海馬へのPGE 2の局所投与により、海馬依存的な文脈型恐怖条件付けが障害される。 これらの結果は、海馬機能における生理的なPGE 2の役割に対し、過度のPGE 2産生は海馬機能を障害する可能性を示唆している。 シナプス可塑性におけるPGの関与は大脳皮質や小脳でも報告されている。 この結果は、大脳皮質のシナプス長期増強においてEP2とEP3が反対の作用を持つことを示唆する。 脳機能的充血 脳機能的充血とは、神経細胞の代謝亢進により細動脈が拡張されて生ずる局所的な脳血流量の増大である。 COX-2欠損マウスやCOX-2阻害薬を投与したマウスでは、刺激により生ずるでの機能的充血が起こらない。 における細胞内の上昇は脳内の細動脈の拡張を誘導するが、この作用にPG合成酵素のCOX-1が関与することを示唆する報告もある。 しかしCOX-1欠損マウスでは、による脳血流増加は消失するのに対し、洞毛刺激による体性感覚野での機能的充血には異常を認めず 、COX-1の役割は確立していない。 PGE 2は強い大脳細動脈の拡張作用を示すことから 、脳機能的充血におけるPGE 2の関与が推測されている。 高血圧 近年、血中のによる交感神経系の活性化と高血圧における(subfornical organ; SFO)の関与が示唆されている。 COX-1とEP1の遺伝子欠損マウスでは、アンジオテンシンII(angiotensin II; Ang II)投与による誘導が消失する。 AngIIはSFOにおける種の誘導を惹起するが、この活性酸素種の誘導がCOX-1やEP1の遺伝子欠損およびEP1阻害薬により消失する。 さらに、EP1欠損マウスの下器官にEP1を再導入すると、Ang IIによる高血圧が正常に誘導されることから、Ang IIはSFOのCOX-1-PGE2-EP1系を介して活性酸素種を発生させ、これが交感神経系の活性化と高血圧を誘導すると考えられている。 神経細胞死 によるにおけるPGの役割は数多く報告されている。 大脳皮質や海馬の興奮性神経細胞では、神経活動によりCOX-2が誘導される。 またの局所投与による刺激では8時間以降の後期でCOX-2とmPGES-1が血管内皮に発現誘導され、カイニン酸刺激による海馬でのPGE 2産生誘導と神経細胞死の誘導にmPGES-1が関与することが遺伝子欠損マウスにより示されている。 神経細胞死におけるPGE 2の作用機序についてはPGE受容体欠損マウスを用いた解析から、少なくともEP1、EP2、EP3の関与が示されている。 の局所投与による神経細胞死やによる巣はEP1阻害薬投与やEP1欠損マウスでは減弱する。 一方、した海馬神経細胞や海馬では受容体活性化による神経細胞死がEP2アゴニストやなEP2により減弱することが報告されている。 この結果に合致し、EP2欠損マウスでは脳虚血モデルにおける梗塞巣が増大する。 しかし、後に詳述するモデルマウスにおける神経細胞死はEP2欠損により減弱し 、投与による神経細胞死もEP2阻害薬により減弱することから 、神経細胞死におけるEP2の役割は複雑である。 EP3の活性化は興奮毒性による神経細胞死を促進することが示されている。 大脳皮質へのNMDA局所投与や海馬スライスへのグルタミン酸投与による神経細胞死はEP3の機能阻害により減弱し、EP3アゴニストにより増強する。 これらの結果から、カイニン酸による血管内皮からのPGE 2がアストロサイトのEP3に作用する可能性が指摘されている。 アルツハイマー病 アルツハイマー病(; AD)は、低下、の変化を主とするの一種である。 ADの小として、家族性ADの原因遺伝子として同定された(amyloid precursor protein; APP)や(presenilin)の変異体を発現させた遺伝子改変マウスがある。 これらAD小動物モデルでは、EP1、EP2、EP4の欠損により、の産生やの形成が減少することが示されている。 この変化に合致し、EP1欠損によりADモデルでの神経細胞死が減少し、における恐怖条件付けの障害が改善することが示されている。 EP4欠損によりモリス試験における長期空間学習の障害が改善することも報告されている。 培養細胞を用いた実験から、EP1、EP2、EP4が特異的な作用機序を介してAD病態に関わることが示唆されている。 筋萎縮性側索硬化症 (amyotrophic lateral sclerosis; ALS)は系の神経細胞変性により、重篤な筋肉の萎縮と筋力低下をきたす神経変性疾患で、呼吸筋麻痺により死にいたる病である。 有効な治療法は確立しておらず、小動物モデルを用いた病態解析が精力的に行われている。 ALSの動物モデルには、家族性ALSの原因遺伝子の一つ 1 SOD1 の変異体を発現させた(G93A SOD1 Tgマウス)が多用されている。 この小動物モデルでは、(inducible nitric oxide synthase; iNOS)、NADPHオキシダーゼの発現誘導に加え、COX-2とEP2の発現も誘導される。 マウスALSモデルではアストロサイトやミクログリアでEP2の発現が誘導され、ALS患者の脊髄ではアストロサイトにEP2の発現が観察される。 さらに、EP2を欠損したALSモデルマウスでは、iNOS、、COX-2の発現誘導が低下し、生存期間も延長した。 これらの結果は、グリア細胞のEP2が酸化ストレスを介して病態進行に関与することを示唆する。 G93A SOD1 Tgマウスから採取した初代アストロサイトとヒト由来運動ニューロンとの共培養により、運動ニューロン数の減少が観察されるが、このモデルではアストロサイトにおけるDP1の発現上昇が確認されている。 さらに、正常アストロサイトとヒトES細胞由来運動ニューロンとの培養系にPGD 2を添加すると運動ニューロン数の減少が観察される。 これらの結果は、変異SOD1による非自律性神経細胞死にDP1が関与する可能性を示している。 精神疾患 PG合成を阻害するNSAIDであるの併用により、既存のの治療効果が増強されることを示す臨床報告が散見される。 でもセレコキシブの併用によりの作用が増強されることも報告されている。 これらの結果は、や統合失調症の病態にPGが関与する可能性を提示する。 一方、 であるやは、前頭前皮質でのの発現誘導ややでのを抑制するが、SSRIのこれらの作用がNSAIDであるやで阻害されることが報告された。 さらに、服用によるうつ病の寛解率は、NSAID服用群の方が非服用群よりも有意に低いことも示く、SSRIの治療効果にもPGが関与する可能性が示唆されている。 これらの結果から、の病態や薬物治療において複数のPG作用が示唆されるが、NSAIDにはPG合成阻害以外の作用もあることから、PG関連分子群の遺伝子改変マウスや特異的化合物を用いた解析が重要になると考えられる。 関連項目• 外部リンク• 参考文献• Moncada, S. 1978. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacological reviews, 30 3 , 293-331. [] []• , Bakhle, Y. 1998. Cyclooxygenases 1 and 2. Annual review of pharmacology and toxicology, 38, 97-120. [] [] []• 2011. Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 25 3 , 813-8. [] [] []• , Urade, Y. 2011. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chemical reviews, 111 10 , 5821-65. [] [] [] []• 2009. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annual review of pharmacology and toxicology, 49, 123-50. [] [] []• 2004. Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Progress in lipid research, 43 1 , 3-35. [] []• Nomura, D. , Morrison, B. , Blankman, J. , Long, J. , Kinsey, S. , Marcondes, M. 2011. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science New York, N. , 334 6057 , 809-13. [] [] [] []• Anrather, J. , Gallo, E. , Kawano, T. , Orio, M. , Abe, T. , Gooden, C. 2011. Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury. PloS one, 6 10 , e25916. [] [] [] []• Yamagata, K. , Andreasson, K. , Kaufmann, W. , Barnes, C. 1993. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron, 11 2 , 371-86. [] [] []• 2004. Signaling the brain in inflammation: the role of endothelial cells. Frontiers in bioscience : a journal and virtual library, 9, 2819-26. [] [] []• Consilvio, C. , Vincent, A. 2004. Neuroinflammation, COX-2, and ALS--a dual role? Experimental neurology, 187 1 , 1-10. [] [] []• Urade, Y. 2002. Lipocalin-type and hematopoietic prostaglandin D synthases as a novel example of functional convergence. [] []• Watanabe, K. 2002. Prostaglandin F synthase. [] []• Tanabe, T. 1995. Prostacyclin and thromboxane synthases. Journal of lipid mediators and cell signalling, 12 2-3 , 243-55. [] []• Nagata, K. 2003. The second PGD 2 receptor CRTH2: structure, properties, and functions in leukocytes. Prostaglandins, leukotrienes, and essential fatty acids, 69 2-3 , 169-77. [] [] []• Dantzer, R. , O'Connor, J. , Freund, G. , Johnson, R. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews. Neuroscience, 9 1 , 46-56. [] [] [] []• , Romanovsky, A. 2012. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nature neuroscience, 15 8 , 1088-95. [] [] [] []• Pecchi, E. , Dallaporta, M. , Jean, A. , Thirion, S. 2009. Prostaglandins and sickness behavior: old story, new insights. [] [] []• Li, S. , Wang, Y. , Matsumura, K. , Ballou, L. , Morham, S. 1999. Brain research, 825 1-2 , 86-94. [] [] []• Engblom, D. , Saha, S. , Westman, M. , Audoly, L. , Jakobsson, P. 2003. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nature neuroscience, 6 11 , 1137-8. [] [] []• , Matsumura, K. , Inoue, W. , Shiraki, T. , Suzuki, K. , Yasuda, S. 2001. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21 8 , 2669-77. [] [] []• , Ivanov, A. , Serrats, J. , Hosokawa, H. , Phayre, A. , Robbins, J. 2006. Cellular and molecular bases of the initiation of fever. PLoS biology, 4 9 , e284. [] [] [] []• Ushikubi, F. , Segi, E. , Sugimoto, Y. , Murata, T. , Matsuoka, T. , Kobayashi, T. 1998. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature, 395 6699 , 281-4. [] [] []• , Oka, K. , Kobayashi, T. , Sugimoto, Y. , Ichikawa, A. , Ushikubi, F. 2003. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. The Journal of physiology, 551 Pt 3 , 945-54. [] [] [] []• Lazarus, M. , Yoshida, K. , Coppari, R. , Bass, C. , Mochizuki, T. , Lowell, B. 2007. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nature neuroscience, 10 9 , 1131-3. [] [] []• Nakamura, K. , Matsumura, K. , Kaneko, T. , Kobayashi, S. , Katoh, H. 2002. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22 11 , 4600-10. [] [] [] []• Nakamura, Y. , Nakamura, K. 2009. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience, 161 2 , 614-20. [] [] [] []• Turnbull, A. 1999. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiological reviews, 79 1 , 1-71. [] [] []• Elander, L. , Ruud, J. , Mackerlova, L. , Jakobsson, P. , Engblom, D. 2009. Inducible prostaglandin E2 synthesis interacts in a temporally supplementary sequence with constitutive prostaglandin-synthesizing enzymes in creating the hypothalamic-pituitary-adrenal axis response to immune challenge. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29 5 , 1404-13. [] [] [] []• Elander, L. , Ruud, J. , Korotkova, M. , Jakobsson, P. 2010. Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide. Neuroscience letters, 470 1 , 10-2. [] [] []• , Serrats, J. 2009. Cerebrovascular cyclooxygenase-1 expression, regulation, and role in hypothalamic-pituitary-adrenal axis activation by inflammatory stimuli. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29 41 , 12970-81. [] [] [] []• Matsuoka, Y. , Furuyashiki, T. , Bito, H. , Ushikubi, F. , Tanaka, Y. , Kobayashi, T. 2003. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proceedings of the National Academy of Sciences of the United States of America, 100 7 , 4132-7. [] [] [] []• Pecchi, E. , Dallaporta, M. , Thirion, S. , Salvat, C. , Berenbaum, F. , Jean, A. 2006. Involvement of central microsomal prostaglandin E synthase-1 in IL-1beta-induced anorexia. Physiological genomics, 25 3 , 485-92. [] [] []• Elander, L. , Hallbeck, M. 2007. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1. American journal of physiology. Regulatory, integrative and comparative physiology, 292 1 , R258-67. [] [] []• Ohinata, K. , Suetsugu, K. , Fujiwara, Y. 2006. Activation of prostaglandin E receptor EP4 subtype suppresses food intake in mice. [] [] []• Ohinata, K. , Takagi, K. , Biyajima, K. , Fujiwara, Y. , Fukumoto, S. , Eguchi, N. 2008. Central prostaglandin D 2 stimulates food intake via the neuropeptide Y system in mice. FEBS letters, 582 5 , 679-84. [] [] []• Hayaishi, O. 2000. Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 355 1394 , 275-80. [] [] [] []• Qu, W. , Huang, Z. , Xu, X. , Aritake, K. , Eguchi, N. , Nambu, F. 2006. Lipocalin-type prostaglandin D synthase produces prostaglandin D2 involved in regulation of physiological sleep. Proceedings of the National Academy of Sciences of the United States of America, 103 47 , 17949-54. [] [] [] []• Eguchi, N. , Kuwahata, Y. , Pinzar, E. , Mochizuki, T. , Urade, Y. , Hayaishi, O. 1999 Sleep of gene-knockout and transgenic mice for prostaglandin D synthase. Sleep Res. Online 2 Suppl-1, 665• , Eguchi, N. , Kimura, K. , Kiyohara, Y. , Qu, W. , Huang, Z. 2001. Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proceedings of the National Academy of Sciences of the United States of America, 98 20 , 11674-9. [] [] [] []• Satoh, S. , Matsumura, H. , Suzuki, F. 1996. Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proceedings of the National Academy of Sciences of the United States of America, 93 12 , 5980-4. [] [] [] []• Huang, Z. , Sato, Y. , Mochizuki, T. , Okada, T. , Qu, W. , Yamatodani, A. 2003. Prostaglandin E2 activates the histaminergic system via the EP4 receptor to induce wakefulness in rats. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23 14 , 5975-83. [] [] []• Zeilhofer, H. 2007. Prostanoids in nociception and pain. Biochemical pharmacology, 73 2 , 165-74. [] [] []• Ito, S. , Okuda-Ashitaka, E. 2001. Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin. Neuroscience research, 41 4 , 299-332. [] [] []• Ueno, A. , Matsumoto, H. , Naraba, H. , Ikeda, Y. , Ushikubi, F. , Matsuoka, T. 2001. Major roles of prostanoid receptors IP and EP 3 in endotoxin-induced enhancement of pain perception. Biochemical pharmacology, 62 2 , 157-60. [] [] []• , Higashi, T. , Togashi, K. , Iida, T. , Segi, E. , Sugimoto, Y. 2005. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Molecular pain, 1, 3. [] [] [] []• Samad, T. , Moore, K. , Sapirstein, A. , Billet, S. , Allchorne, A. , Poole, S. 2001. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410 6827 , 471-5. [] [] []• , Nakano, H. , Kobayashi, T. , Sugimoto, Y. , Ushikubi, F. , Ichikawa, A. 2001. Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. British journal of pharmacology, 133 3 , 438-44. [] [] [] []• Reinold, H. , Ahmadi, S. , Depner, U. , Layh, B. , Heindl, C. , Hamza, M. 2005. Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. The Journal of clinical investigation, 115 3 , 673-9. [] [] [] []• Ahmadi, S. , Lippross, S. , Neuhuber, W. 2002. PGE 2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nature neuroscience, 5 1 , 34-40. [] [] []• Mabuchi, T. , Kojima, H. , Abe, T. , Takagi, K. , Sakurai, M. , Ohmiya, Y. 2004. Membrane-associated prostaglandin E synthase-1 is required for neuropathic pain. Neuroreport, 15 9 , 1395-8. [] [] []• Kunori, S. , Matsumura, S. , Okuda-Ashitaka, E. , Katano, T. , Audoly, L. , Urade, Y. 2011. A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord. Glia, 59 2 , 208-18. [] [] []• Furuyashiki, T. 2011. Stress responses: the contribution of prostaglandin E 2 and its receptors. Nature reviews. Endocrinology, 7 3 , 163-75. [] [] []• , Furuyashiki, T. , Yamada, K. , Nagai, T. , Bito, H. , Tanaka, Y. 2005. Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proceedings of the National Academy of Sciences of the United States of America, 102 44 , 16066-71. [] [] [] []• , Furuyashiki, T. , Momiyama, T. , Namba, H. , Mizoguchi, A. , Mitsumori, T. 2009. Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. The European journal of neuroscience, 30 12 , 2338-46. [] [] []• , Furuyashiki, T. , Kitaoka, S. , Senzai, Y. , Imoto, Y. , Segi-Nishida, E. 2012. Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32 12 , 4319-29. [] [] [] []• Kitaoka, S. , Furuyashiki, T. , Nishi, A. , Shuto, T. , Koyasu, S. , Matsuoka, T. 2007. Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27 47 , 12900-7. [] [] [] []• Teather, L. , Packard, M. 2002. Post-training cyclooxygenase-2 COX-2 inhibition impairs memory consolidation. , 9 1 , 41-7. [] [] [] []• , Munoz, P. , Melnikova, T. , Wang, Q. , Liang, X. , Breyer, R. 2009. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Experimental neurology, 217 1 , 63-73. [] [] [] []• , Zhang, J. , Breyer, R. 2009. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. Journal of neurochemistry, 108 1 , 295-304. [] [] [] []• Matousek, S. , Hein, A. , Shaftel, S. , Olschowka, J. , Kyrkanides, S. 2010. Cyclooxygenase-1 mediates prostaglandin E 2 elevation and contextual memory impairment in a model of sustained hippocampal interleukin-1beta expression. Journal of neurochemistry, 114 1 , 247-58. [] [] [] []• Hein, A. , Stutzman, D. , Bland, S. , Barrientos, R. , Watkins, L. , Rudy, J. 2007. Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience, 150 4 , 754-63. [] [] [] []• Akaneya, Y. 2006. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 26 40 , 10209-21. [] [] [] []• Le, T. , Shirai, Y. , Okamoto, T. , Tatsukawa, T. , Nagao, S. , Shimizu, T. 2010. Lipid signaling in cytosolic phospholipase A2alpha-cyclooxygenase-2 cascade mediates cerebellar long-term depression and motor learning. Proceedings of the National Academy of Sciences of the United States of America, 107 7 , 3198-203. [] [] [] []• Niwa, K. , Araki, E. , Morham, S. , Ross, M. 2000. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20 2 , 763-70. [] [] []• Takano, T. , Tian, G. , Peng, W. , Lou, N. , Libionka, W. , Han, X. 2006. Astrocyte-mediated control of cerebral blood flow. Nature neuroscience, 9 2 , 260-7. [] [] []• Niwa, K. , Haensel, C. , Ross, M. 2001. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circulation research, 88 6 , 600-8. [] [] []• Ellis, E. , Wei, E. 1979. Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and I2. The American journal of physiology, 237 3 , H381-5. [] [] []• Cao, X. , Peterson, J. , Wang, G. , Anrather, J. , Young, C. , Guruju, M. 2012. Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain. Hypertension Dallas, Tex. : 1979 , 59 4 , 869-76. [] [] [] []• , Matsumura, K. , Sugiura, H. , Maehara, M. , Yasuda, S. , Uematsu, S. 2010. Endothelial microsomal prostaglandin E synthase-1 exacerbates neuronal loss induced by kainate. Journal of neuroscience research, 88 2 , 381-90. [] [] []• , Anrather, J. , Zhou, P. , Park, L. , Wang, G. , Frys, K. 2006. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nature medicine, 12 2 , 225-9. [] [] []• Saleem, S. , Li, R. , Wei, G. 2007. Effects of EP1 receptor on cerebral blood flow in the middle cerebral artery occlusion model of stroke in mice. Journal of neuroscience research, 85 11 , 2433-40. [] [] [] []• McCullough, L. , Wu, L. , Haughey, N. , Liang, X. , Hand, T. , Wang, Q. 2004. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24 1 , 257-68. [] [] [] []• Jiang, J. , Ganesh, T. , Du, Y. , Thepchatri, P. , Rojas, A. , Lewis, I. 2010. Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proceedings of the National Academy of Sciences of the United States of America, 107 5 , 2307-12. [] [] [] []• Liu, D. , Wu, L. , Breyer, R. , Mattson, M. 2005. Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Annals of neurology, 57 5 , 758-61. [] [] []• , Wang, Q. , Hand, T. , Wu, L. , Breyer, R. , Montine, T. 2005. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25 44 , 10180-7. [] [] [] []• , Wang, Q. , Shi, J. , Lokteva, L. , Breyer, R. , Montine, T. 2008. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Annals of neurology, 64 3 , 304-14. [] [] [] []• Jiang, J. , Ganesh, T. , Du, Y. , Quan, Y. , Serrano, G. , Qui, M. 2012. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proceedings of the National Academy of Sciences of the United States of America, 109 8 , 3149-54. [] [] [] []• Ahmad, M. , Ahmad, A. , Zhuang, H. , Maruyama, T. , Narumiya, S. 2007. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. Journal of neuroimmunology, 184 1-2 , 172-9. [] [] [] []• Ikeda-Matsuo, Y. , Tanji, H. , Ota, A. , Hirayama, Y. , Uematsu, S. , Akira, S. 2010. Microsomal prostaglandin E synthase-1 contributes to ischaemic excitotoxicity through prostaglandin E2 EP3 receptors. British journal of pharmacology, 160 4 , 847-59. [] [] [] []• Takemiya, T. , Matsumura, K. , Sugiura, H. , Yasuda, S. , Uematsu, S. , Akira, S. 2011. Neurochemistry international, 58 4 , 489-96. [] [] []• , Kim, Y. , Li, R. , Yocum, J. , Kapoor, N. , Langer, J. 2012. PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease. Neurobiology of aging, 33 9 , 2215-9. [] [] [] []• , Namba, T. , Takehara, M. , Murao, N. , Matsushima, T. , Sugimoto, Y. 2012. Improvement of cognitive function in Alzheimer's disease model mice by genetic and pharmacological inhibition of the EP 4 receptor. Journal of neurochemistry, 120 5 , 795-805. [] [] []• Hoshino, T. , Namba, T. , Takehara, M. , Nakaya, T. , Sugimoto, Y. , Araki, W. 2009. Prostaglandin E2 stimulates the production of amyloid-beta peptides through internalization of the EP4 receptor. The Journal of biological chemistry, 284 27 , 18493-502. [] [] [] []• Shie, F. , Breyer, R. 2005. Microglia lacking E Prostanoid Receptor subtype 2 have enhanced Abeta phagocytosis yet lack Abeta-activated neurotoxicity. The American journal of pathology, 166 4 , 1163-72. [] [] [] []• Di Giorgio, F. , Boulting, G. , Bobrowicz, S. 2008. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell stem cell, 3 6 , 637-48. [] [] []• , Riedel, M. , Scheppach, C. , Sokullu, S. , Krampe, K. 2002. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. The American journal of psychiatry, 159 6 , 1029-34. [] [] []• , Krause, D. , Dehning, S. , Musil, R. , Schennach-Wolff, R. , Obermeier, M. 2010. Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophrenia research, 121 1-3 , 118-24. [] [] []• , Schwarz, M. , Dehning, S. , Douhe, A. , Cerovecki, A. 2006. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular psychiatry, 11 7 , 680-4. [] [] []• Abbasi, S. , Hosseini, F. , Modabbernia, A. , Ashrafi, M. 2012. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. Journal of affective disorders, 141 2-3 , 308-14. [] [] []• , Vanover, K. , Chen, E. , Marshall, J. 2011. Antidepressant effects of selective serotonin reuptake inhibitors SSRIs are attenuated by antiinflammatory drugs in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 108 22 , 9262-7. [] [] [] [].

次の

コルチコステロン測定キット

コルチ コステロ ン

測定試料:血清,血漿,尿,培養上清,母乳,測定範囲:0. 最新データシートはテクニカルサポート部までご請求下さい。 EA7001-1• 1 kit• 無 未発注• 説明文 測定試料:血清,血漿,唾液,尿,培養上清,母乳,測定範囲:0. 最新データシートはテクニカルサポート部までご請求下さい。 30 ニュース2017年8月1日号 p. 30 製品記事 関連記事• 閉じる• 感度:1. 最新データシートはテクニカルサポート部までご請求下さい。 30 製品記事 関連記事 Factor X, Human, ELISA Kit, AssayMax 96 well• EF1010-1• 1 kit• 無 未発注• 感度:0. 最新データシートはテクニカルサポート部までご請求下さい。 30 製品記事 関連記事 Fibrinogen, Rat, ELISA Kit, AssayMax 96well• ERF2040-1• 1 kit• 無 未発注•

次の

Corticosterone EIA Kit (YK240)

コルチ コステロ ン

なんで、女性は男性よりも長生きなの? チコちゃん「2問目は一番長生きしそうな健康美人はだーれ?」 年齢が一番若い夏菜さんが指名されたよ! チコちゃんの質問は、「どうして男より女の方が長生きなの?」 夏菜さんは、「脂肪が多いから?」って答えて、チコちゃんに怒られてたね! でも、なぜなんだろう? 長寿大国、日本 日本人の平均寿命は、男性 80. 98歳女性 87. 14歳。 (2017年のデータ) その差は、およそ6歳差だね! 健康体操に精を出すシニア世代に聞いても、みんなわからないみたい。 答えは、男は女だったのに無理して男になったから ええっ、男の子って、女の子から変わったんだ! なぜ、女性のほうが長生き? なぜ、男性のほうが寿命が短いというと、これまでは男性の喫煙率が高いからとか、仕事のストレスが多いからと言われてきたんだ。 でも、女性の喫煙率 56. 9歳、男性63. また、女性の就業率 82. 7歳、男性73. とやはり女性の方が長生きなんだね。 どうしてなんだろう? 男性が無理に男性にされているから 解説によると、生物学上、生き物の基本は女なんだって。 男は、女が「男化」したものなんだ! 卵子と精子が出会い、受精すると受精卵が作られるだ。 でも、すべての受精卵もまずは女性として成長するんだって。 これは全ての生物に共通とのこと。 ヒトの場合は、受精から最初の6週間で「子宮」や「卵巣」などの女性器が発生するんだ。 そして、7週目に将来男性になる胎児の体の中では、コルチコステロンというホルモンがたくさん放出されるそう。 このコルチコステロンの働きで、胎児の体内で大量の男性ホルモンが放出。 コルチコステロンには手痛い代償が 実は、コルチコステロンは免疫細胞の能力を低下させる(免疫力を低下させてしまう)んだって。 つまり、病気に対する抵抗力が弱まっちゃうということなんだね。 男性の体内で放出され続けるコルチコステロンの為に病気になりやすく、平均寿命が短くなるんだ。 ちなみに、このコルチコステロンの分泌を抑えると男性の免疫力がアップするんだけど、男性が女性化してしまうんだね。 男性は、「男であり続けるために色んな犠牲を強いられている」んだね。 ということで、チコちゃんの答えは、 「男より女の方が長生きなのは男はもともと女だったのに無理して男になったから」 でした。 塚原愛アナから補足 コルチコステロンのホルモンについては女性も分泌されていますが、男性の方が圧倒的に量が多いとのこと。 (注)コルチコステロンは男女の平均寿命差を生み出す要因の一つと考えられており、他にも要因があります。 解説してくれたのは 青山学院大学の福岡伸一教授。 福岡 伸一(ふくおか しんいち、1959年9月29日 — )は、日本の生物学者。 青山学院大学教授。 専攻は分子生物学。 農学博士(京都大学、1987年)。 東京都出身。 (Wikipediaより) 今回も最後まで読んでくれてありがとう。 他の記事もよろしくね。 2018年5月25日放送、第7回「チコちゃんに叱られる!」の放送内容は下記からどうぞ!.

次の